Persone


Professori e Ricercatori


Andrea Appel

Ricercatore Universitario (RTDb)

Interessi di ricerca

Il mio ambito di ricerca è la Teoria delle Rappresentazioni con un'attenzione particolare rivolta all'interazione tra Algebra, Geometria e Fisica Matematica nella teoria dei gruppi quantici. I miei interessi comprendono algebre di Lie, gruppi quantici, sistemi integrabili e categorificazione.

Contatti

Email U-Web Personale


Claudio Arezzo

Professore Ordinario (ICTP)

Interessi di ricerca

1) Existence problem for special submanifolds of Einstein spaces.
2) Existence of special metrics on compact complex manifolds.
3) Analysis on manifolds and special metrics
4) Ricci flow on complex manifolds

Contatti

Email U-Web ICTP


Anna (Miriam) Benini

Professore Associato

Interessi di ricerca

Holomorphic dynamics in one and several complex variables, especially concerning the iteration of transcendental maps.

Contatti

Email U-Web


Leonardo Biliotti

Professore Associato

Interessi di ricerca

Semi-Riemannian geometry; existence, uniqueness and molteplicty results of closed geodesics geometrically distinct. Genericity of nondegenerate critical points and bumpy metric theorem on Semi-Riemannian geometry. Isometric actions on symmetric spaces of compact type and isometry actions of noncompact Lie group on compact Lorentazian manifold. Symplectic geometry, Hamiltonian actions and moment map.

Contatti

Email U-Web Personale


Andrea Cattaneo

Ricercatore Universitario (RTDb)

Interessi di ricerca

Contatti

Email U-Web


Costantino Medori

Professore Ordinario

Interessi di ricerca

Special structures on differentiable manifolds (in particular Cauchy-Riemann and paracomplex structures) and homogeneous spaces.

Contatti

Email U-Web


Fiorenza Morini

Ricercatore Universitario

Interessi di ricerca

a) Theory of nearrings. Study of specific classes of nearrings: for example Orthodox nearrings, A-rigid nearrings and weakly divisible nearrings. Such nearrings have provided a starting point for further study aimed at geometric-combinatorial structures (for example in building designs and codes from weakly divisible nearrings). b) Theory of groups. Asymptotic problems and probabilistic methods. Topic of research is to study the function P_G (t) that expresses the probability that t elements taken at random from a group G generate the same group. The function P_G can be expressed as Dirichlet series, and then extended by interpolation to a complex-valued function, the inverse of that function is called probabilistic zeta function of the group G.

Contatti

Email U-Web


Lorenzo Nicolodi

Professore Ordinario

Interessi di ricerca

His main research interests lie in differential geometry, especially in the geometry of submanifolds in homogeneous spaces and in the study of integrable systems, by the methods of exterior differential systems and of the moving frame.

Contatti

Email U-Web Personale


Alberto Saracco

Professore Associato

Interessi di ricerca

My research is mainly in complex analysis, CR geometry and differential geometry. More precisely, I have studied, under appropriate convex properties of domains in C^n (convexity, C-convexity, strictly and strongly pseudoconvexity): extension of functions and analytic objects; relation between the notion of Hilbert and Kobayashi hyperbolicity.

Contatti

Email U-Web Personale


Nicoletta Tardini

Ricercatore Universitario (RTDa)

Interessi di ricerca

My research is in non-Kähler geometry. More precisely, I am interested in metric and cohomological aspects of (almost-)complex and symplectic manifolds with a particular focus on Hodge theory.

Contatti

Email U-Web Personale


Adriano Tomassini

Professore Ordinario
Direttore di Dipartimento

Interessi di ricerca

1) Cohomological properties of almost complex manifolds;
2) Special metrics on complex manifolds;
3) D-complex structures;
4) Deformations of complex structures.

Contatti

Email U-Web Personale


Michela Zedda

Professore Associato

Interessi di ricerca

My research focuses on the existence of special metrics in complex differential geometry, with a particular attention to canonical Kähler metrics induced by an holomorphic immersion into a complex space form.

Contatti

Email U-Web Personale


Titolari di Borse ed Assegni di Ricerca


Stefano Marini

Assegnista

Interessi di ricerca

Il mio campo di ricerca è la geometria complessa, studio principalemte le varietà di Cauchy Riemann. I miei interessi di ricerca includono: aspetti geometrici di sottovarietà reali di varietà complesse, teoria di Lie, varietà di Cauchy-Riemann omogenee, orbite reali in varietà bandiera complesse.

Contatti

Email


Dottorandi


Joshua Windare
Oluwagbenga

Supervisore:
Leonardo Biliotti

Ciclo XXXV

Email

Tommaso Sferruzza
O

Supervisore:
Adriano Tomassini

Ciclo XXXV

Email

Hu Mi
O

Supervisore:
John Erik Fornaess

Ciclo XXXVI

Email

Veronica Beltrami

Supervisore:
Alberto Saracco

Ciclo XXXVII

Email

Simone Cristofori

Tutor:
Michela Zedda

Ciclo XXXVII

Email

Renato Faraone

Tutor:
Lorenzo Nicolodi

Ciclo XXXVII

Email